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QUASIMOLECULAR SIMULATION OF LARGE LIQUID 
DROPS 

DONALD GREENSPAN 
Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, Texas 76019, U.S.A. 

SUMMARY 
Large liquid drops are simulated by molecular aggregates called quasimolecules. The quasimolecules 
interact in accordance with classical molecular-type formulae. Supercomputer examples are described and 
discussed for both stationary and falling water drops. 
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1. INTRODUCTION 

The study of fluid drops has long been of interest to mathematicians, scientists and engineers (see 
e.g. References 1-1 5). In this paper we explore a quasimolecular, i.e. molecular aggregate, 
approach to modelling liquid drops. 1 6 ,  ’ In particular we will simulate and study large water 
drops. Our approach will be distinctly different from continuum Navier-Stokes simulations in 
that we will incorporate classical molecular-type force formulae. Thereby, for example, surface 
tension will not have to be imposed artificially but will be a direct consequence of the model. 
CRAY X-MP/24 computer examples will be described and discussed for both stationary and 
falling drops. 

2. MATHEMATICAL, PHYSICAL AND MODELLING PRELIMINARIES 

The gross physical response of a fluid to external forces is primarily the result of forces due to 
gravity and molecular interaction. Gravity acts uniformly on all molecules in a fluid. Molecular 
interaction forces have components of both attraction and repulsion. Classically, these forces 
have magnitude F given by 

( 1 )  
G H  
r p  rq’  

F = - - + -  G > O ,  H > 0 ,  q > p > 7 ,  

where r is the radius from molecule P to a neighbouring molecule. Because of the singularity in 
equation (1) at r = 0, the motion of an individual molecule can be relatively volatile locally, even 
though the gross motion of the fluid is physically stable. 

To simulate fluid motion we will proceed as follows. First we will group the large number of 
fluid molecules which are physically present into a relatively small number of larger units called 
quasimolecules or particles. This process of lumping molecules into particles is the same as that 
utilized by both Boussinesq and Prandtl.I3 Next we define the motion ofeach particle, denoted by 
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Pi, of the resulting system of, say, N particles by the coupled system of non-linear ordinary 
differential equations 

Fi=miri, i = 1, 2, . . . , N ,  

Fi = F1.i + F2,i> 

( 2 )  

in which mi is the mass of Pi. In equation (2) ,  

where F l , i  is the force due to gravity and F2, i  is the force of Pi due to molecular interaction with 
its neighbours. The force F l , i  applies uniformly to all particles Pi, i = 1,2, . . . , N .  The force F2, i  
is determined in accordance with equation (I), but with p and q diminished appropriately in order 
to maintain the correct gross motion of the system. 

Next, the resulting differential system in equation (2) is solved numerically from given initial 
data as follows.'6 Consider N particles Pi,  i = 1, 2, . . . , N .  For At > 0 let t ,  = kdt, k = 0, 1, 
2, . . . . For each i let mi denote the mass of Pi and let Pi at t k  be located at T i , ,  = (xi,,, Y ~ , ~ ) ,  have 
velocity v ~ , ~  = ( u ~ , , , ~ ,  u ~ , ~ , ~ )  and have acceleration ai,, = (aj,k,x, L Z ~ , ~ , ~ ) .  Let position, velocity and 
acceleration be related by the formulae 

At t k ,  let the force acting on Pi be Fi,k = ( F i . k . x ,  F i , k , y ) .  We relate force and acceleration by the 
dynamical equation 

(6)  F.  = m.a. 
I ,  k I I ,  k .  

The motion of each Pi will be determined explicitly and recursively by equations (3)-(6) from 
given initial data once the force Fi.k is prescribed, and this is done as follows. First fix a positive 
parameter D ,  called the distance parameter. We do not exclude the possibility that D is infinite. 
Any particle Pj, different from Pi,  which lies within a circle of radius D and centre Pi is called a 
neighbour of Pi. If P, is a neighbour of Pi, let rij., be the vector from Pi to Pj att ime t , ,  so that 
'jj ,k= llri,k-rj,, 1) is the distance between the two particles. Then the force Fi";.,k on Pi due to Pj at 
time t k  is defined by 

The force Ftk  on Pi at t ,  is defined by 

where the summation is taken over all neighbours of Pi. Finally, the total force Fi.k on Pi at t, is 
defined by 

Fi.k.x = F ? k . x r  F i , k . y  = F?k,y  - mig ,  (9) 

where g is the constant of acceleration due to gravity. 

Greenspan. 
For the convenience of the reader, a typical CR,4Y FORTRAN program is available in 
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3. PARAMETER SELECTION FOR WATER DROPS 

For the simulation of water drops by quasimolecules the choices of N ,  p and q will be dominated 
by computational considerations, while those of m, G,  H and D will be dominated by physical 
considerations. 

For computational convenience and simplicity, set p = 3 and q = 5. A relatively large time step 
can then be employed in solving (2). In addition, the computer program will require no square 
root routine. For budgetary reasons we are limited to N - 1000 and hence proceed as follows. 
Consider a rectangular basin of width 2 cm as shown in Figure 1. Into this basin set N = 1111 
quasimolecules Pi at the respective points (xi, yi) determined by 

x1 = - 1, y I  = 0, ~ 5 2  = -0.98, ~ 5 2  = 0.034641 016, 

= O.04+xi, = y , ,  i = 1, 2 , .  . . , 50, 

~ i + l  = 0.04 + xi, yi+ 1 = ~ 5 2 ,  i = 52, 53, . . . , 100, 
x. = x. l - I o l ,  yi=O~069282032+yi-lol ,  i =  102, 103 , . . . ,  1111. 

The resulting arrangement is shown in Figure 2. The ( x i ,  yi) are vertices of a regular triangular 
mosaic in which the distance from any Pi to an immediate neighbour is 0.04 cm. The height of the 
system is 0.727461 33 cm and there are 22 rows of particles which contain, alternately, 51 and 50 
particles. 

Next, the mass parameter m of each quasimolecule will be determined by mass conservation. 
For this purpose, suppose that the region filled by quasimolecules, as shown in Figure 2, were to 
be filled by molecules. Now, for two water molecules, a simplistic potential function #(r)  is given 
by19 

#(r) = 48[ (;J2 - (;JJ 
where the distance r between the molecules is in angstroms, c = 2.725 A and E = 707 cal mol-'. 
Conversion to ergs yields 

Figure 1 .  The basin 
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Figure 2. The initial configuration of quasimolecules 

Hence 

Now, when 4 is a minimum, then F = 0, which yields 

= 0, 
12(2.725)' (2.725)6 

rI3 r7 
- 6 __- 

the solution of which is 
r = 3.058 709 A. 

X 

We now fill the basin up to the height 0.727 461 33 cm with molecules which are also arranged on 
a regular triangular mosaic, but so that the distance from any molecule to a nearest neighbour is 
3.058 709 A. The generating regular triangle for such a mosaic has edge length 3.058 709 A and 
height 2.648 919 6 A. Since the basin area to be covered is 2 cm by 0.727 461 33 cm, it follows that 
the number N * of molecules which fill the area is approximately 

Moreover, since the mass of an individual water molecule is (30.103) 
mass M is approximately 

g, the total molecular 

M = (5.4055854)10-8 g. (15) 

This total mass is now distributed over the 1 1  11 quasimolecules by the choice 

-- - (4.8655134)10-" g. (5,4055854)10-8 
1 1 1 1  

m =  

To approximate G and H ,  consider first the total energy E of the molecular configuration 
described above. Since E was minimized, the energy is assumed potential. Now, the energy 
determined by one molecule and any immediate neighbour is, from (1  l), 

(p (3.058 709) = -(4-911595 7) 10- l 4  erg. (17) 
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p3 p2 

p5 ' 6  

Figure 3. A quasimolecule and its six nearest neighbours 

Since the minimum potential results for two such adjacent molecules, we can estimate E as 
follows. Suppose one traverses the rows of molecules from left to right, starting at the top, and 
suppose one comes to a particular molecule PO, as shown in Figure 3. Except at boundary points, 
Po will have exactly six immediate molecular neighbours, which are shown as P, ,  P,, P,, P,, P, 
and P, in Figure 3. However, the potential energies of the pairs POP2, POP3 and POP, have 
already been determined by the method prescribed for traversing the rows. Thus, at Po, only three 
contributions are made to the energy calculation and these are for the pairs POP,,  POP, and 
POP,. Hence from (14) and (17) the total energy is approximately 

E = 3 (1.795 696 6) loi5 (-4.91 1 595 7) lo-', erg 

or, equivalently, 
E = - (2.645 920 7) lo2 erg. 

Now, for the quasimolecular system, we have thus far 

G H  
R R  

F=-,+,dyn 

with R measured in centimetres. Hence 

G H 
2R2 4R4 

4 = - __ + ---erg. 

Let us assume that all the energy of the quasimolecular system is also potential. Thus for 
R = 0.04 cm it follows that 

H +- G _ _ _  
(004)j (0.04)5 =O' 
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while conservation of energy implies, from (18), the approximation 

= - (2.645 920 7) lo2. 
G H 

3(1111) - ___ ( 2(0.04)2 + 4(004ii) 
The solution of system (21), (22) is G = (5.0806758)10-4, H I= (8.129081 2)10-7, which yields for 
the quasimolecules the force magnitude 

(23) 
(5.080 675 8) 1 0-4 

R3 
(8.1 29 08 1 2) 10- 

R5 + -_ F(R)= - 

Unfortunately, force formula (23) is itself unrealistic and requires normalization. This can be 
seen dynamically by examining force components in the Y-direction only. For, if R = ( X ,  Y ) ,  
then (6)-(9) would imply for the motion of quasimolecule P that 

> (24) 
(5.080 675 8) (8.129 081 2) l op7  ) h] 

R 5  - t  R 3  
d2 Y 
dt2 

w-= -980m+ 1 

where the summation is taken over those quasimolecules which interact with P. However, from 
(16) it then follows that 

( 1.044 22 1 9) 1 O7 ( 1.670 77 5 5 )  1 04) RyI 
R5 - - = - 9 8 0 + 2 [ ( -  dZ dt2 Y R 3  i r  - 

in which the magnitude of the force interaction between quasimolecules is so great that gravity 
may have no effect at all on any resulting motion. Thus normalization is required and is 
accomplished appropriately as follows. 

In place of (25), consider 

-= -980+01C - (1.044221 9)107 + -  (1.67O7755)1O4)l'] 9 d2 Y 
dt2 (26) 

where 01 is a normalization constant. Guidance for the choice of cx is now derived from actual 
molecular interaction. In the molecular case the formula (1 2) is local in the sense that molecules 
more than five equilibrium distances away from a given molecule have, relative to gravity, a 
negligible effect on that molecule. We extend this result by assuming that any quasimolecule more 
than five equilibrium distances away from a given quasimolecule has, relative to gravity, a 
negligible effect on that quasimolecule. Now, for quasimolecules, the equilibrium distance R is, 
from (23), approximately R = 0.04. Hence 6R = 0.24 and we will determine 01 in accordance with 
the inequality 

R5 [( R 3  

(1.044221 9)107 (1.67077S5)104 I + < (1 Yo) (980), 
(0.24)5 1 - (0.24)3 

from which it follows that a - (1.334447 8)10-8. However, this quantity can be approximated 
reasonably in terms of constants already developed. 'Indeed, let Q be the number of molecules 
which are aggregated into a quasimolecule, so that (2 = N*/ l l l l .  Then Q = (1.6162885)1012 
and l/JQ = (7.8657574)10-7, which is approximately 01. Hence, for simplicity, we set 

01 = 1/JQ = J($) = (7.8657574)10-7, 
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and the magnitude F in (23) is replaced finally by 

(8.129081 2)10-') 
R 5  

F = (7.865 755 74)10-' + 
or, more concisely, 

3.996 335 4 lo- + 6.3941366 
F = ( -  R3 R 5  

Finally, since force interactions greater than six times the equilibrium distance are relatively 
small, we now set the distance parameter D by D = 2.0. On the CRAY X-MP/24, use of the CFT 
compiler thereby reduces the computation time to 80% of that required if one uses D =  00. 

4. DYNAMlCAL EQUATIONS 

In the motion of a system of quasimolecules from initial data, it follows from ( I ) ,  (2) and (29) that 
the dynamical system to be solved is 

in which S = (0, 1) and the summation is taken over all neighbours within a radius of 0.20 cm. 
However, using (16) and the transformation 

R = 0.074 330 624 R*, 

t = 0.027 263 643 T, 
(31) 

(32) 

the equation transforms into 

58 200 -- d2R' - -9.86-t Z[ (- 
+ (.:,,.)$I. d T 2  (33) 

which is less sensitive to the choice of time step than is (30). It is (33) which is utilized in the 
examples to be described next. 

5. EXAMPLES 

To begin, let us regenerate a basin of quasimolecules which is geometrically similar to that shown 
in Figure 2 but in the new R* = ( X * ,  Y*)  co-ordinates. We will do this by direct consideration 
of (33) rather than by applying the transformation (31). 

Since 
58 +-=o 200 _ _ _  

(R*)3  ( R * ) 5  

yields an equilibrium distance of 034, let us generate a set of 1 1 1 1  quasimolecules, as in Section 2, 
but by the formulae 

X : =  -13.75, Yy=O, XT2= -13.475, Yg2=0.47631397, 

X:+l = 055 + X : ,  
X:+, =0.55+X: ,  Y:+l = YT2, i = 5 2 , 5 3 , .  . . ,  100, 

Y:+l = Y:, i = 1 , 2 , .  . . , 50, 

Xr=X:- lOlr  Y:=0.95262794+ Y:-lOlr i=102, .  . . , 1 1 1 1 .  
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In addition, we will avoid complete symmetry by prescribing small initial velocities, which keep 
the kinetic energy close to zero, by 

v; = (-0~0000t, O.O), i = 1, 2,. . . , 101, 

VT = (0.0, -0.00001,), i = 102, 103, . . . , 201, 

VT = (0.00001, -O.OOOOl,), i = 202, 203, . . . , 11 11. 

We now set AT = 0.0002, T, = kAT, k = 0, 1, . . . . This time step will be used in all examples to 
be discussed. 

The system of 1111 particles is then allowed to interact in accordance with (33) and the 
numerical solution is generated using (3)-(5). If any particle collides with a wall of the basin, it is 
reflected symmetrically but its velocity is damped by the factor 0.8. The interaction distance used 
is D = 2.75. The system is allowed to interact through T80000, at which time the fluid particles are 
reflected about the X-axis, the walls are deleted and a ceiling of 201 additional particles is added 
by the rule 

X T =  -25.0+(i-1111)(0.25), YT=0.25, i =  1 1 1 1 ,  1112, . . . ,  1312. 

This result is shown in Figure 4(a). 

Figure 4. Pendent drop rormation 
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The quasimolecules of the ceiling are fixed, i.e. they are not allowed to move, and are called the 
solid particles. However, they are allowed to interact with the fluid particles with a force effect 
given by 

One should observe now that the motions of real fluid drops can take relatively long periods of 
time.' To avoid such a situation we shall choose G and H in (34) so that fluid adhesion to the 
ceiling is relatively strong and drop formation relatively rapid. For this reason we set G = 250 
and H = 7 5  throughout. 

The entire system is now allowed to interact for 6000 time steps, with no imposed damping 
but with the gravity force decreased from g = 9.8 to g = 0 9 8  to prevent the immediate fall of the 
fluid from the ceiling. The counter was reset to T = 0 and the resulting formation is shown in 

Figure 5. Pendent drop fall 



256 D. GREENSPAN 

. . ..\. . ... 

. ..., 
(a) T,.5000 (4 T*,OOLl 

Figure 6. Trend towards circularization 

Figure 4(b) at T,,,,. The system was then allowed to continue its interaction for 6000 more time 
steps to T,,,,o but with g reset correctly to 9-8. The result is shown in Figure 4(c). Finally, the 
system is allowed to interact for an additional 14000 time steps to T26000 but with velocities 
damped initially and every 2000 steps thereafter by the factor 0.2. The result is shown in 
Figure 4(d). The effect of the damping is to decrease the total kinetic energy or internal heat. 
The result shown in Figure 4(d) is in complete agreement with experimental shapes of pendent 
water drops.7 Moreover, it is worth noting from Figure 4(d) that the fluid quasimolecule at the 
free surface show a greater separation than do  the interior fluid quasimolecules, which is 
consistent with the theory that it is this relatively large separation in the free surface which 
manifests itself as surface tension. 

Next let us begin with the data for the pendent drop shown in Figure 4(d) and use them as 
initial data to study the fall of a pendent drop. We again reset the timer. Now the drop shown in 
Figure 4(d) will not fall of its own accord. Thus it must be dislodged by a suitable force. This can 
be done in a variety of ways. A computationally convenient way to do this would be simply to 
increase g, because once the drop has been dislodged its shape will depend only on internal forces, 
though of course the distance it has fallen will not. Since our primary interest is in the shape of the 
falling drop, and since again we desire a relatively rapid reaction, we merely take the initial data 
as that provided by the output for Figure 4(d), eliminate all damping and set g to 98-0. The 
resulting fall of the drop is shown in Figures 5(a)-(j) at the respective times shown. Figures 6(a) 
and 6(b) show the shapes of the drop as it continues to fall and indicate its trend towards 
circularization. 

6. REMARKS 

In the present paper we have developed a quantitative approach for the simulation of liquid 
drops. In particular we studied pendent water drops. Previo~sly, '~  such simulations had been 
strictly qualitative. Our approach utilized molecular aggregates and conservation of mass and 
energy. The importance of gravity in the study of liquid drop motion, however, required a 
normalization of the interparticle energy formula. It appears that the methodology would then 
extend to the study of solids, in those cases where gravity does not play a significant role, without 
the necessity of normalization. 

The examples presented can of course be improved upon. In this first paper we were interested 
in reasonable results and not in results of the highest precision. Thus in (27) we chose only 1 % of 
the gravity constant to mean 'small with respect to gravity'. We would have made this percentage 
smaller. In other places also, better choices can now be made. In particular, in retrospect, it 
probably was not wise to choose the initial velocities V l  as large as they were chosen, since the 
results are not as symmetrical as experiments indicate. Nevertheless, the results do indicate that, 
on the actual molecular level, there are oscillations in the free surface. 
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